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Abstract

1. There has been a recent demand for forecasting in ecology, particularly in the field of 

ecosystem management. Empirical dynamic modeling (EDM), an equation-free nonlinear 

forecasting method, is receiving growing attention, but it requires long time series to produce 

accurate predictions. Though most ecological time series are short, spatial replicates are often 

available. Here we explore how utilizing available spatial data can improve our ability to 

forecast ecological dynamics.

2. There are several ways to incorporate spatial information into EDM and not all have been 

applied in ecology. We compare spatial EDM approaches used in ecology and physics and 

introduce a flexible Bayesian model that makes use of prior movement information.

3. We test these methods on simulated data generated with three population dynamics models 

with varying levels of complexity, time series length, spatial symmetry, and heterogeneity. 

Adding spatial data generally improves accuracy, though the best method depends on the 

spatial process. We applied the methods to empirical fisheries data, highlighting the 

complexity of real population dynamics.

4. Leveraging spatial data is an effective way to overcome the problem of short ecological time 

series. Since the best forecasting method depends on the underlying dynamics, we suggest 

that users apply several in concert and that this may be useful in identifying spatial 

heterogeneity in dynamics.

Key-words: Bayesian prior, Gaussian process, empirical dynamic modeling, nonlinear 

forecasting, spatial heterogeneity, spatiotemporal forecasting, time-delay embedding

Introduction

Over the past three decades there have been numerous calls to make ecology a more 

predictive science (Clark, 2001; Dietze, 2017; Dietze et al., 2018; Evens et al., 2012). One of the 

most pressing demands for ecological forecasting is in the field of ecosystem management 

(Christensen et al. 1996; Panel, 1999; Pikitch, 2004), which accounts for interactions among 

competing ecosystem services when setting management policy. Unfortunately, in most 
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ecosystems, we do not have complete knowledge of all the system variables and their interactions. 

In such partially observed systems, nonlinear interactions between numerous species and 

exogenous variables make mechanistic predictions difficult (Wood and Thomas, 1999).

Alternatively, equation-free approaches, collectively called empirical dynamic modeling 

(EDM) (Sugihara and May, 1990; Takens, 1981; Ye et al., 2015), can be used to make predictions 

in partially observed systems. The state variables of a dynamical system evolve through time and 

tend to converge on a set of values (e.g. a fixed point, limit cycle, or complex shape) referred to as 

the attractor for the system (Chang et al., 2017). Takens’ theorem (Takens, 1981) demonstrates 

that time lags of a single variable can be used as synthetic coordinates to reconstruct an image of 

the attractor. In an ecological context, this means that it is possible to use historical data from a 

single species to reconstruct the dynamics even when we do not have data for other species in the 

community. In practice, this is done by constructing a collection of short segments of the time 

series,  and using this ‘library’ to identify similar segments. If the segments {�� ― �,�� ― � + 1,…,��}
are long enough and the dynamics are smooth, similar segments imply similar future states 

allowing robust, model-free predictions to be made. See Movie S1 of (Ye et al., 2015) for an 

explanation. EDM is increasingly used in ecology to forecast population size (Perretti et al., 2013), 

identify causal connections (Sugihara et al., 2012), quantify species interactions (Deyle et al., 

2016; Rogers et al., 2020), and identify chaotic dynamics (Sugihara, 1994; Sugihara and May, 

1990). However, EDM requires long time series and frequent sampling to fully resolve the 

attractor. This limits the accuracy of EDM in ecology where time series are often short (20-50 

years).

There are several avenues to overcome the problem of short time series. For instance, 

libraries from several state variables (i.e. species) can be concatenated to increase the density of 

points on a common attractor (Banbrook et al., 1997; Hsieh et al., 2008; Sugihara, 1994). This 

method improves predictions, but the obvious trade-off is that it requires data for multiple species. 

In cases where data for only one species are available from multiple locations, it may be possible 

to use the available spatial information and improve forecasts.

The state of the art for incorporating spatial information into EDM varies by discipline. In 

ecology, it is common to concatenate data from multiple sites to fill in the attractor more 

completely (Clark et al., 2015; Glaser et al., 2014). Hierarchical approaches have also been used 

to combine information across sites (Munch et al., 2017; Rogers and Munch, 2020). Although 
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these methods often improve forecasts, they rely on two opposing requirements. First, the spatial 

replicates must be similar enough that their dynamics are mutually informative. Second, the 

replicates must be different enough to provide new information. For instance, highly synchronized 

replicates contribute very little. These methods use only lags of the local time series to construct 

an average attractor across multiple sites. However, nearby populations can exchange migrants or 

share common drivers. In this case, the dynamics at a focal site depend on the state of its neighbors, 

so lags from neighboring sites may provide additional information for forecasts.

Spatial EDM (sEDM), uses both spatial neighbors and temporal lags to leverage this spatial 

coupling. sEDM has been used in a variety of fields since its introduction (Ørstavik and Stark, 

1998; Parlitz and Merkwirth, 2000) including forecasting coastline changes (Grimes et al., 2015) 

and sunspots (Covas, 2017; Covas and Benetos, 2019). Although sEDM seems like a promising 

avenue for forecasting in ecology, there is, to our knowledge, no ecological application of it, and 

it has not been compared to the method of concatenating data. Here we aim to determine which of 

these approaches more effectively utilizes spatial information to improve ecological forecasts.

Since sEDM is typically applied outside ecology, there are three limitations to address to 

make it suitable for ecological forecasting. First, sEDM applications usually construct predictions 

for each focal location independently. That is, although sEDM inputs include lags of the focal site 

and neighbors, the library of data used to make predictions is based on predictor-target pairs 

centered at the focal site. Including predictor-target pairs centered at other locations by 

concatenating libraries (Clark et al., 2015; Glaser et al., 2014) could possibly improve sEDM 

predictions. This would simultaneously account for dynamic influences of dispersal or gradients 

and also borrow information across locations on the shape of the attractor.

Second, standard sEDM implementation makes simplifying assumptions including 

symmetric coupling between sites and identical dynamics across sites. Since many ecological 

systems break these assumptions (e.g. with advection and spatial heterogeneity) (Barnett et al., 

2019; Kolasa et al., 1991; Largier, 2003), these assumptions should be relaxed when evaluating 

these methods.

Finally, there is no consensus on how to choose which neighbors and lags to include in 

attractor reconstructions with sEDM. Mutual information and false nearest neighbors can be used 

(Abarbanel, 1997; Covas, 2017; Covas and Benetos, 2019; Kantz and Schreiber, 2004), or 

combinations of neighbors and lags may be selected to minimize prediction error on some subset 
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of training data (Bialonski et al., 2015). However, these methods force the spatial and temporal 

lags to be equally spaced, and a more flexible lag spacing may be preferable (Judd and Mees, 

1998).

Automatic relevance determination (ARD) (MacKay and Neal, 1994; Neal, 1996), a 

technique used in machine learning, is useful for selecting relevant lags in Bayesian approaches to 

EDM (Munch et al., 2018, 2017). However, the multivariate embedding theorem (Deyle and 

Sugihara, 2011) asserts that, from a theoretical perspective, sEDM is inherently non-identifiable. 

Here, it is important to distinguish between model identifiability, a well-known statistical problem, 

and dynamical identifiability which arises because there are multiple ways to exactly reconstruct 

dynamics (Deyle and Sugihara, 2011). For instance, in a predator-prey system, we could write a 

model using either the current densities of both species, lags of the predator, or lags of the prey. 

All three formulations are equally valid and produce identical dynamics. In contrast, statistical 

identifiability occurs whenever multiple parameter combinations produce identical values for the 

likelihood and can often be eliminated by reparameterization. The lack of dynamical identifiability 

in sEDM implies that different lag selections are equally valid and will produce nearly equivalent 

fits, making it highly likely that a standard implementation of ARD would settle at a local 

maximum. This is an issue because settling at a local maximum in-sample could reduce out-of-

sample predictive accuracy. Moreover, lack of identifiability implies that ARD may select 

different lags for two realizations of the same dynamics, reducing mechanistic interpretability of 

lag selections. Ideally, lag selections should be consistent across repetitions of equivalent 

dynamics.

To overcome this problem, we introduce a modification of ARD intended to resolve this 

identifiability issue. We use the physical network topology of a spatiotemporal system to derive a 

Bayesian prior for the expected relevance of each lag. By using this prior, ARD is more likely to 

converge to a collection of lags that are biologically and physically plausible, without restricting 

the inference to a fixed set.

Here we examine how to leverage spatial information with EDM and address how our 

modifications of sEDM compare to the standard implementation of sEDM and other EDM 

methods that are used in ecology. Specifically, we compare the performance of several 

combinations incorporating local lags (EDM) vs. spatial lags (sEDM) and local vs. concatenated 

libraries. For models with spatial lags, we compare performance with and without the informative 
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prior. We present results on simulated data generated with population dynamics models and also 

on empirical data for several widely distributed marine species.

Materials and Methods

Empirical dynamic modeling and spatial extensions

EDM is grounded in Takens’ theorem (Takens, 1981), which states that an image of the 

attractor of a multi-dimensional deterministic dynamical system can be reconstructed using the 

time series of a single state variable, . From the single-variable time series, embedding �0,…,��
vectors of the form  for  are used to reconstruct the attractor. In other [��,�� ― 1,…,�� ― �]⊤ � ∈ (�,…,�)
words, the present value of a state variable can be written as a function of its past values. That is, ��

 where  for some unknown function  and embedding = �(�� ― �) �� ― � = [�� ― 1,…,�� ― �]⊤ �
dimension .�

As an intuitive example of why EDM should work, consider a predator-prey system in 

which the dynamics fall on a limit cycle. Given a single observation of the prey abundance, it is 

impossible to predict the next step because the observation can come from either an increasing or 

decreasing part of the cycle. This ambiguity disappears if we augment the prey abundance with 

information on which side of the cycle the observation is. The current predator abundance is one 

obvious possibility, but the current direction of change in prey abundance (e.g. increasing or 

decreasing) would also be sufficient. Prey abundance a short time earlier provides the same 

information. Thus, time lags allow us to reconstruct dynamics in partially observed systems. See 

(Deyle et al., 2016; Perretti et al., 2013; Sugihara, 1994; Ye et al., 2015) for more details on EDM 

in an ecological context.

For spatial extensions of EDM, consider a single-variable time series at  locations, � �1
0,...,

. To make use of these spatial replicates in EDM, the common approach in ecology is �1�,...,��
0 ,...���

construct embedding vectors for each location and concatenate libraries across sites. This relies on 

the assumption that all replicates come from the same attractor (Banbrook et al., 1997), so data 

from any site can inform dynamics of the others.

Alternatively, sEDM embedding vectors include lags of both the focal location as and its 

nearest spatial neighbors (Ørstavik and Stark, 1998; Parlitz and Merkwirth, 2000). Essentially, this 
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says that the state at time  and site  is a function of the past values of the state in sites � �
, given by� ― �,…,�,…,� + �

 ��� = �(�� ― �� ― �,…,��� ― �,…,�� + �� ― �), (1)

for some unknown function  and embedding dimensions  and . Here .� � � ��� ― � = [��� ― 1,…,��� ― �]⊤
Regardless of how spatial data are used, our goal is to approximate  from data so that it �

can be iterated forward to make predictions. There is a vast literature on function approximation 

techniques (Iatan, 2016; Judd, 1999; Stalph, 2014), but the most commonly used in ecological 

EDM are piece-wise constant models (e.g. Simplex (Sugihara and May, 1990)), local linear 

regression (e.g. S-map (Sugihara, 1994)), splines (e.g. (Ellner and Turchin, 1995)), and Gaussian 

process (GP) regression (Munch et al., 2017). We implement EDM and sEDM via GP regression 

to facilitate incorporating auxiliary biological and physical information through prior specification 

(Thorson et al., 2014). Additionally, the GP framework admits a hierarchical structure to share 

information across different locations (Rogers and Munch, 2020), though we do not pursue this 

here.

Here we provide a brief introduction to GP regression, define a naive ARD prior, and then 

develop a novel ARD prior for sEDM. For additional background, Rasmussen & Williams 

provides an overview of modeling with GP regression (Rasmussen and Williams, 2006), and 

Munch et. al. provides examples of using GP regression specifically for EDM (Munch et al., 2017).

In general, we want to fit a model for

 , ��� + � = �(�) + �� (2)

where the approximation error, , has mean 0 and variance . Note that the input  has a different �� � �
structure for EDM and sEDM as described above. To infer , we assume a GP prior and update �
using the observed time series. The GP is a continuous generalization of the multivariate normal 

distribution, completely specified by a mean function, , and a covariance function, �(�) = �[�(�)]

 (Rasmussen and Williams, 2006). Without �(�,�′) = �[(�(�) ― �(�))(�(�′) ― �(�′))]

information on the characteristics of  a priori, we use a constant prior mean function . � �(�) = 0

Consistent with previous GP applications, we use a squared-exponential covariance function
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,�(�,�′) = ������( ― ��(� ― �′)⊤�(� ― �′))
(3)

with

� = [
�1 0 … 0
0 �2 … 0⋮ ⋮ ⋱ ⋮
0 0 … ��].

Here,  is a characteristic length scale and governs how much  varies in the direction of �� �
the  input (Rasmussen and Williams, 2006). Note that equation (3) has  free parameters, ��ℎ � + 1 �1

. For , we use a weakly informed prior distribution, . We use the same ,...,��,�2� �2� Beta(1.1,1.1)

prior distribution for , the variance in approximation error, which limits uncertainty in the next �
state to less than twice the observed total variance (assuming that the data have been scaled to unit 

standard deviation prior to analysis). Priors for  are described below. We estimate these �
hyperparameters by maximizing the marginal likelihood using the resilient backpropagation 

(Rprop) algorithm (Riedmiller and Braun, 1993). Subsequent predictions are made conditional on 

these maximum a posteriori estimates (MAP) (Rasmussen and Williams, 2006).

Note that when ,  is constant in the direction of the  input. To encourage sparsity �� = 0 � ��ℎ
in , previous GP-EDM applications (Munch et al., 2017; Rogers and Munch, 2020) have used �
identical half-normal priors for each , i.e.�

,�(��) =
������( ― �����) (4)

for all . A value of  is typically chosen so  will have a single extremum over a unit 1 ≤ � ≤ � � =
�
2 �

interval of the input on average (Sacks and Ylvisaker, 1966), which regularizes  and avoids over-�
fitting (Munch et al., 2017). While this prior has been successful for GP-EDM, setting identical 

priors does nothing to ameliorate identifiability issues in sEDM (Fig. 1) and we refer to this model 

as sEDM with a naive prior. Next, we derive an informed prior for  that makes use of the physical �
network to promote identifiability.
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Physically-Informed Prior Specification

In order to facilitate identifiability, we take advantage of the fact that some combinations 

of sites are more likely to have coupled dynamics than others. If sites are near each other, it is 

likely for them to be coupled through similar environmental conditions and dispersal. This 

coupling decreases for sites that are far apart, so we expect the length scale parameters to decay 

with distance. We modify the ARD framework to account for this by setting independent but 

informative half-normal priors for the length scale parameters allowing the mean for each to 

decrease with distance to the target. For diffusive coupling or, equivalently, nearest neighbor 

dispersal, the prior expected value of each  is given by�
�(��,�) ≈ ��,���� (5)

where . Here,  and  are the spatial and temporal distance from the target ��,� =
12����― �22�� � �

respectively,  is the mean-square dispersal distance, measured in whatever units are used to �
measure distance between sites, and  is the variance of the data. See Supplementary Information �2

SI.2 for a derivation of (5). Since the expected value of the half-normal distribution is , �(�) =
2��

we set  in (4).� =
�
2(�(�))2

Fig. 1(a) demonstrates the identifiability problem in naive sEDM by displaying length scale 

estimates for 20 independent but identical simulations of a two-species competition model with 

nearest-neighbor dispersal (see SI.1 for model and parameter values). In each simulation, we 

generated 20 time points from random initial conditions on a one-dimensional lattice with 7 sites. 

Using data from only one species, we included 4 time lags from each site in embedding vectors. 

ARD identified which of those 28 inputs were relevant for making predictions.

Since the dynamics for each simulation were generated by the same model, ARD should 

select the same inputs across simulations. However, consistent with the multivariate embedding 

theorem (Deyle and Sugihara, 2011) and earlier work (Kantz and Schreiber, 2004), the selected 

lags varied widely, indicating an identifiability problem. Although forecasting may or may not 

suffer, this lack of identifiability makes interpretation of ‘relevance’ based on the estimated length 
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scales impossible. Fig. 1(b) shows analogous outputs when the physically-informed prior 

specification is used and highlights its ability to improve identifiability.

Local vs. spatial methods

Here we describe the distinction between the methods used. Fig. 2 shows the relationship 

between input embedding vectors and their outputs for EDM vs. sEDM with and without an 

informed prior. We can construct multiple embedding vector/output pairs through time so that all 

 locations have a library of data available to train the GP. Fig. 3 shows different uses of these �
libraries.

Forecasting Population Dynamics

Here we compare six forecasting methods: EDM (local), EDM (concatenated), naive 

sEDM (local), naive sEDM (concatenated), informed sEDM (local), and informed sEDM 

(concatenated). We evaluate these on both simulated and empirical data.

Simulated Data

Forecast performance of EDM methods are sensitive to a variety of factors including the 

length of time series, system dimension (e.g. number of coupled species), complexity of dynamics 

(e.g. periodic, chaotic, etc.), and spatial characteristics (e.g. dispersal, heterogeneity, etc.). To 

understand these factors, we varied them in three ecological models (Table 1) Importantly, these 

models cover a range of dimensions and ecological interactions to increase the generality of our 

results.

We used the Table 1 models to simulate spatiotemporal data on a one-dimensional lattice 

with periodic boundary conditions. For each simulation, we assigned random initial conditions to 

every variable in every site and removed the first 100 time points to avoid transients. We split the 

time series into ‘training’ data for fitting the GP hyperparameters, and ‘testing’ data for estimating 

the one-step-ahead forecast accuracy, out of sample. For all models, we used a lattice size of 

, test set of length . We used the abundance data for only one species, , to train � = 75 ����� = 20 �
and test the methods and ignored the other species abundances.
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The training time series length, , varied by simulation. We repeated every model 100 ������
times to produce summary statistics for forecast errors. GP regression has  complexity �(�3)

stemming from a matrix inversion step that is required to compute the posterior predictive 

distribution. Hence, to ease the computational burden, we restricted our forecasting to a subset of 

locations (i.e. 10 randomly chosen sites used for both training and testing). Importantly, all 

methods used the same locations within each simulation, but locations varied across the repetitions.

Note that the informed sEDM prior (5) has one additional parameter  for the mean-square �
dispersal distance. This parameter is not easily estimated from data. To avoid choosing  �
arbitrarily, we fit the model with  fixed at either:  (i.e. short dispersal distance and steep � � = 10

decay in prior ) or  (i.e. long dispersal and nearly identical prior). Note that � � = 28 ⋅ 10 = 2560

 was chosen arbitrarily but is large enough such that all lags are assigned similar priors, � = 2560

making the naive prior a special case of the informed prior. Importantly, users applying this method 

should consider the units of distance in their data and may need to adjust the candidate values of 

. With both sets of hyperparameters corresponding to the different  values, we evaluated leave-� �
one-out predictions on the training data. The  associated with the lower prediction error on �
training data was used on testing data.

We measured forecast accuracy with the root mean squared error (RMSE) given by

RMSE =
1� 1�����

�∑� = 1

�����∑� = 1

(��,�
predicted ― ��,�

observed)2
.

where the sum is over the testing data for each site. We chose to use the RMSE instead of Pearson’s 

correlation coefficient – the criterion commonly used in ecological EDM studies – because the 

RMSE is more widely used in other disciplines and measures whether the absolute magnitude of 

the predictions and observations match. As a performance benchmark we calculated the RMSE 

obtained when using the mean of the training data to predict all points in the test data. We refer to 

this as the “mean predictor.”

For both EDM and sEDM we used a temporal embedding dimension up to   � = ������
(Cheng and Tong, 1992). In sEDM, we set the spatial embedding dimension to  (i.e. � = 2

embedding vectors contain five locations) and used ARD to prune irrelevant inputs.
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We used this setup in four simulation experiments. The first two addressed how dynamical 

complexity and time series length affect the forecast performance. These assumed symmetric 

dynamics (i.e. equal dispersal to nearest neighbors) and spatial homogeneity (i.e. identical 

parameter values for all sites). Since this may not apply for ecological dynamics (Barnett et al., 

2019; Kolasaet al., 1991; Largier, 2003), two additional experiments addressed the impact of 

asymmetry and heterogeneity.

Effects of Dynamical Regime

We determined how dynamical complexity influences forecast performance by simulating 

each model in Table 1 with three parameter sets generating periodic dynamics, chaotic dynamics 

with high spatial synchrony, and chaotic dynamics with low synchrony for . See Table ������ = 25

1 for parameter values and Table S1 in SI.3for synchrony measures.

Effects of Time Series Length

To examine the effect of time series length on forecasts, we simulated each model using 

the parameters for chaotic (high synchrony) dynamics for time series lengths , , and ������ = 25 50

.75

Effects of Asymmetric Coupling

To test whether advection influences forecasts, we simulated dynamics with unidirectional 

dispersal. That is, updates were given by

��� + 1 = [(1 ― �)�( 
��) +

�
3

(�( 
� + 1� ) + �( 

� + 2� ) + �( 
� + 3� ))]����

Dynamics were simulated with  and chaotic (high synchrony) parameters. Fig. 4 ������ = 25

illustrates the difference between the two types of coupling compared.

Effects of Spatial Heterogeneity

To generate heterogeneity, we set a spatial gradient in the growth rate of  for each model �
(Model 1: , Model 2: , Model 3: ). Since simulations had periodic boundary conditions, the � � �
gradient was given by a sinusoidal function with period . For example, for Model 1, we defined �
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 for each location . The amplitude  scales the heterogeneity in growth rate, �� = ��sin(2�� �) + �0 � ��
which we varied from 0 to 1. This measure of heterogeneity requires model-specific knowledge 

that would not be accessible in real applications. As a practical empirical measure, we used the 

spatial variance in mean abundance given by , where  is the average abundance �� =
max�� ― min��

min�� ��
of the species in site  over the time series. Models in this analysis were simulated with  � ������ = 25

and chaotic (high synchrony) parameters.

Empirical Data

To further evaluate the forecasting utility of these methods, we compared them on data for 

several marine species from the northeast United States continental shelf. The NOAA Northeast 

Fisheries Science Center (NEFSC) fall bottom trawl survey has sampled from Cape Hatteras, 

North Carolina to the Gulf of Maine since 1963 (Politis et al., 2014). To avoid any effects of survey 

design changes, we restricted our analysis to offshore strata from 1973-2008. We predicted 

dynamics of three different species: longfin squid (Loligo pealeii), silver hake (Merluccius 

bilinearis), and butterfish (Peprilus triacanthus). These species were chosen because they are 

widely distributed and have short generation times.

We compared forecast performance for data aggregated at both coarse and fine spatial 

resolutions. The coarse resolution aggregated the data into four major regions: Mid-Atlantic Bight, 

Southern New England, Georges Bank, and Gulf of Maine. These regions are grouped to have 

similar biophysical characteristics and have been used in previous studies (Lucey and Nye, 2010; 

Nye et al., 2009; Walsh et al., 2015). The fine resolution used the survey strata as spatial sites. Fig. 

5 shows the midpoint of all strata and their corresponding major regions. At both resolutions, we 

used the Euclidean distance between midpoints as  in equation (5). We selected a temporal �
embedding dimension between  and  depending on which minimized the average � = 5 � = 7

forecast errors. At the coarse resolution, lags from the nearest site to the focal site were included 

in the sEDM embedding vectors and libraries from all regions were used in the concatenated 

methods. In the fine resolution analysis, the embedding vectors used lags from the two strata 

closest to the focal site, and concatenated methods included libraries from sites within the same 

major region as the focal site.
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At both resolutions, population abundance was estimated by averaging the number of 

individuals in the catch over all tows in the site each year. We computed sequential forecasts (i.e. 

forecasts that only used data earlier in the time series to predict the next point) through the entire 

time series and reported errors on the last 10 time series points. We predicted log population 

abundance, , for all species.ln(�� + 1)

Results

Results on Simulated Data

Overall, simulations show that utilizing spatial information in EDM is advantageous. 

However, the characteristics of the dynamics influence which method most effectively leverages 

spatial information.

Effects of Dynamical Regime

Fig. 6 shows the mean and standard deviation RMSE of one-step-ahead forecasts of the 

Table 1 models with three levels of complexity. Even with a short training time series of ������
, concatenating spatial replicates provides accurate predictions (  average error = 25 ∼ 75%

reduction from the mean predictor), and these methods consistently outperform local EDM, which 

ignores spatial data. Alternatively, including spatial lags without concatenating libraries (local 

sEDM) does not improve prediction over local EDM, and these methods are more sensitive to 

dynamical complexity; forecast errors increase as dynamics become more complex and less 

synchronized. See Table S2 for RMSE and variance explained  for greater interpretability.(�2)

Dynamical complexity plays a role in the forecasting ability of these methods but does not 

qualitatively change their performance compared to one another. Complexity primarily influences 

how much improvement is made by using spatial data. For instance, when dynamics are simple 

(e.g. periodic) all methods perform well and concatenated libraries only reduce forecast errors 

from local libraries by about 20% on average, but concatenated libraries reduce errors by much 

more (  65%) when the dynamics are complex (i.e. chaotic and asynchronous).∼ A
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Effects of Time Series Length

Longer time series yield better predictions for all methods (Fig. 7 and Table S3). As the 

length of the training time series increases from 25 to 75, the RMSE decreases from about 50% to 

at least 70% average error reduction from mean predictor. As with dynamical complexity, the 

performance ranking of the methods does not change with time series length; concatenated 

methods are consistently best and local sEDM methods are consistently worst. For short time series 

( ), concatenation reduces forecast error compared to local libraries by about 50%, but ������ = 25

all methods produce similar accuracy for long time series ( ), so the benefit of ������ = 75

concatenation decreases with time series length..

Effects of Asymmetry

Interestingly, results are qualitatively different when dispersal is unidirectional compared 

to symmetric (Fig. 8 and Table S4). When advection is present, local sEDM outperforms local 

EDM (  10% average reduction in RMSE) even on the short time series of 25 points. ∼
Concatenating time series still produces a substantial improvement. Hence, any method of 

incorporating spatial data is better than implementing the standard local EDM method in this case.

Effects of Spatial Heterogeneity

As we increase spatial heterogeneity, the RMSEs for all concatenated methods increase 

until they become worse than their corresponding local methods (Fig. 9). In contrast, local methods 

are relatively insensitive to spatial heterogeneity. This demonstrates that when spatial replicates 

become too different, they can no longer be concatenated.

One final result that pertains to all simulations is that sEDM with a physically-informed 

prior provides minimal predictive advantage over the naive implementation, typically providing 

no more than 10% reduction in forecast error.

Results on Empirical Data

Results from simulations suggest that utilizing spatial information is likely to provide the 

strongest advantage over standard local EDM when time series are short and dynamics are 

complex and asynchronous. This is closely analogous to the data from NEFSC bottom trawl 
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survey. The time series is only 36 years long, the dynamics vary irregularly, and they are not highly 

synchronized (Table S1 in SI.3). In general, these data are ideal for evaluating EDM methods 

because they come from a system that is estimated to support over 5000 species (Fautin et al., 

2010) and we do not have complete understanding of all relevant species and drivers.

Concatenated methods always provide more accurate predictions than their corresponding 

local methods, but the improvement is more substantial at the fine spatial resolution where local 

methods lose accuracy (Fig. 10). Specifically, concatenating data from all regions at the coarse 

resolution produces forecast errors that are approximately 12% lower than corresponding local 

methods on average. Concatenating data from sites within the local region at the fine resolution 

reduces error by  on average. In most cases, there are only slight differences between EDM ∼ 20%

and sEDM performance, and the best-performing method is not consistent across species. See 

Tables S5 and S6 for exact RMSE and .�2

Discussion

Here we explored various ways to leverage spatial data when forecasting ecological 

dynamics in partially observed systems. Specifically, we evaluated the forecast performance of the 

ecologists’ approach (concatenated EDM), the physicists’ approach (local naive sEDM), and our 

dispersal-motivated prior to combine information from multiple sites. We compared these methods 

to classic local EDM, which does not use spatial information. Results indicate that when dynamics 

are primarily homogeneous, any concatenated method produces substantially better forecasts than 

local EDM. If dynamics differ significantly among spatial replicates, however, concatenated 

methods produce poorer predictions since they rely on the assumption that spatial replicates have 

comparable dynamics. Applying both approaches to a given data set may provide a direct way of 

identifying heterogeneous dynamics.

Dynamic complexity and time series length play a role in the forecasting ability of all 

methods. Generally, as complexity decreases and time series length increases, forecasts improve 

(Figs 6 and 7). Intuitively, when dynamics are regular (e.g. periodic), the attractor can be filled 

with a short time series and all methods predict dynamics well. When dynamics are chaotic, more 

data are required to reconstruct the attractor.
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Regardless of complexity and time series length in Figs 6 and 7, local sEDM methods 

consistently have higher errors than local EDM, implying that it is not advantageous to incorporate 

spatial data through embedding vectors alone. This result is somewhat counterintuitive since EDM 

is a special case of sEDM. But we can understand this as a trade-off between in-sample fitting and 

out-of-sample forecasting: sEDM has more length-scale parameters and better in-sample fits on 

training data, but local EDM is more robust out-of-sample. ARD is insufficient to eliminate the 

unnecessary spatial lags when dynamics are complex and time series are short.

In the first two simulation experiments, concatenated methods have lower prediction errors 

than local methods. This is likely because concatenated methods fit a single GP on data from 10 

locations while local methods fit a separate GP on data from each location. Therefore, 

concatenation uses 10 times more data than local methods. Fig. S2 shows that the forecast errors 

of local and concatenated methods converge as the time series length for local methods increases. 

Thus, under homogeneous conditions, concatenating data from 10 locations is essentially 

equivalent to having a time series that is 10 times longer. Therefore, concatenation is an effective 

way to overcome limitations of short time series provided that the spatial replicates contribute 

independent information, which is easily determined by measuring the improvement in forecast 

performance.

With symmetric dispersal, local EDM outperforms local sEDM, but the opposite occurs 

with unidirectional dispersal (Fig. 8) as the length scale parameters in sEDM can accommodate 

asymmetry. Spatial heterogeneity is also important because it hinders the utility of concatenated 

methods (Fig. 9) since they assume stationarity across replicates (i.e. all replicates must come from 

the same attractor) (Banbrook et al., 1997). This assumption is reasonable if the underlying 

dynamical equations are identical for all spatial replicates. However, if they vary across sites, 

information is not easily shared between them.

Given the simulation results, it is reasonable to imagine cases that could yield different 

qualitative outcomes. Fig. S3 shows that when strong heterogeneity and asymmetry are both 

present, local sEDM methods are most accurate and concatenated methods are least accurate, 

contradicting the results in Figs 6 and 7 in nearly every way. Importantly, we cannot identify 

precise thresholds of asymmetry or heterogeneity at which these changes occur. We present this 

simply as an important area for future work and a proof-of-concept that these aspects of the 

dynamics are instrumental in the utility of spatial extensions of EDM.
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Although simulations reveal that none of these methods perform uniformly well in every 

scenario, the fact that their performance depends on characteristics of the dynamics offers 

interesting potential for diagnosing ecological conditions. For example, if we did not know 

anything about the dynamics of a system, comparing forecast performance across all of these 

methods may provide insights into whether advection and heterogeneity are influencing the 

dynamics. This knowledge of ecological conditions could be useful when making management 

decisions.

In our empirical analysis on coarse resolution data from the NEFSC survey, local sEDM 

outperformed local EDM on silver hake and butterfish data but did not on longfin squid data. In 

light of simulations, this is consistent with advective dispersal of silver hake and butterfish. 

Interestingly, there is empirical evidence that dynamics in this region are advection-dominated 

from particle tracking oceanographic models (Lynch et al., 2014), stable isotope studies (Clarke et 

al., 2009), and genetic data (Mach et al., 2011). Furthermore, concatenated methods produced 

slightly lower forecast errors than local methods at the coarse resolution. Given the complexity 

and asymmetry in the empirical data (Table S1), we might expect concatenation to provide a 

stronger improvement (e.g. right panels of Fig. 6). However, it is possible that a moderate level of 

heterogeneity hinders the utility of concatenation in these cases. There is ample spatial 

heterogeneity in environmental drivers (e.g. temperature, salinity, dissolved oxygen) that are often 

linked to differences in population growth (Hofmann and Powell, 1998), and the ecological 

communities (e.g. prey, predators, competitors) also differ substantially between these regions . 

The empirical measures of heterogeneity on these for all species at the coarse resolution further 

support this deduction:  for longfin squid,  for silver hake, and  �� = 1.54 �� = 1.23 �� = 1.82

for butterfish.

In contrast, at fine resolution, concatenated methods provided greater predictive 

improvement. This is likely due to the geographic ranges spanned: At the coarse resolution, 

concatenated methods used data from along the entire coast whereas at the fine resolution, 

concatenation was restricted within biophysical regions. As a result, there is lower heterogeneity 

in concatenated data at the fine resolution (  for longfin squid,  for silver hake, �� = 1.10 �� = 0.97

and  for butterfish) allowing for information to be more easily shared across sites.�� = 1.06

Note that local methods performed more accurately at the coarse spatial resolution data 

than they did at the fine resolution. One explanation for this is that averaging abundance measures 
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over several strata at the coarse resolution distorts nonlinear signals that appear at the fine 

resolution (Glaser et al., 2014; Sugihara et al., 1999, 1990; Ye, 2015), making it easier to predict 

coarse dynamics accurately.

All analyses reveal that informed sEDM usually produces more accurate predictions than 

naive sEDM, but the improvement is typically no more than 1-5% (Tables S2, S3, S4, S5, S6). 

This suggests that although our informed prior helps resolve the lack of identifiability (Fig. 1) and 

improves interpretability, it does not substantially improve predictive accuracy. This is consistent 

with the multivariate embedding theorem’s notion that different combinations of lags can produce 

equivalent predictions (Deyle and Sugihara, 2011). Thus, using the informed prior is not 

necessarily helpful if the goal is to improve predictions, though it may facilitate inference about 

ecological mechanisms based on the ARD selection of relevant lags (Browne et al., 2008; 

Marwala, 2015; Munch et al., 2018).

Regardless of whether EDM is used for inference or prediction, it is crucial for EDM users 

to understand the importance of temporal and spatial scale. If the temporal scale of the dynamics 

is too large for EDM to capture with time lags or if samples are not taken with high frequency, 

none of these methods will give accurate forecasts (e.g. SI.9) and a linear or other parametric 

modeling approach may be more suitable. Similarly, the spatial scale at which data are collected 

may influence the heterogeneity across sites. For example, if data are collected over a large 

geographic range at distant sites, dynamics likely vary across locations due to environmental 

gradients. In this case, concatenated methods are unlikely to perform well. Generally, given the 

ubiquity of spatial heterogeneity in ecological systems at the scale we typically observe (Aksnes 

et al., 1989; Juanes and Conover, 1995; Tommasi et al., 2014), we suggest that concatenating 

libraries should be done in conjunction with the sEDM approach presented here.

Although we have identified asymmetry and heterogeneity as factors that influence the 

efficacy of each method there are many other factors that could also play a role but were not 

addressed in our simulations. For example, variation in dispersal strength and distance, and 

differences in movement between species and age classes are likely to affect which method 

performs best. In light of this, it would be helpful to develop specific diagnostic tests that provide 

guidelines for choosing among methods (e.g. a measure of information flow between sites). In 

early attempts, we considered embedding dimension and spatial synchrony as potential indices, 

but these proved inconsistent. More work is needed on this topic.
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Our main simulations also did not address how these methods perform as we predict 

multiple steps into the future. However, Fig. S4 shows that all methods produce better predictions 

than the mean up to 10 steps into the future. Changing the forecast horizon generally does not 

influence relative performance across methods and we expect our conclusions about complexity, 

asymmetry, and heterogeneity extend to multi-step predictions.

We compared the six methods here because they are commonly used, they are easy to 

implement, and they are good starting points for integrating spatial information into EDM. In the 

future, it would be valuable to evaluate hierarchical approaches (Munch et al., 2017; Rogers and 

Munch, 2020), approaches that average over several sub-optimal embeddings (Okuno et al., 2020), 

diffusion maps (Coifman et al., 2005), or deep-learning (Chattopadhyay et al., 2020) to determine 

which methods are more robust.

All of our analyses made inferences from single time series. This was intended to provide 

proof-of-concept and determine general conditions that influence our ability to integrate spatial 

information. However, time series for several species are often available at multiple locations, and 

studies on multiview (Ye and Sugihara, 2016) and multivariate (Deyle and Sugihara, 2011; Dixon 

et al., 1999) embedding suggest that predictions may improve if we include information from other 

species and drivers. We could do this by simply including lags of other species as additional inputs 

in embedding vectors, we could construct a hierarchical version to share information across 

species, or we could combine the method of multiview embedding with sEDM. Comparing the 

benefits of these approaches is potential territory for future work. Additionally, many species are 

influenced by harvesting or other anthropogenic effects. In these cases, incorporating the past 

history of exploitation or anthropogenic inputs is likely to improve prediction accuracy. This is an 

important next step that opens up the possibility of using EDM as a tool for quantitative ecosystem 

management (Boettiger et al., 2015; Giron-Nava et al., 2017).

The flexibility of EDM to describe complex dynamics with incomplete data makes this a 

promising avenue for making strong inferences of ecological dynamics and developing multi-

species management policies that are robust to structural uncertainty. However, these methods 

require long time series for convergence. Although typical ecological time series are fairly short, 

aggregating information across multiple sites - either through concatenation or sEDM - can 

substantially improve the utility of empirical approaches to ecological dynamics.
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# Name Model Parameters

1
Ricker

(1 species: �) �(�) = ���(1 ― �) � = {3,3,3.5}

2
Predator-Prey

(2 species: �,�) �(�,�) = ��� ― � ― ��
(1 + ��)(1 + ��)

�(�,�) = ��―� +
��

(1 + ��)(1 + ��)
� = {2.4,2.6,2.8}

, , � = 2 � = 2 � = 1.75

 , � = 0.1 � = 0.1

3
Host-Parasitoid-

Parasitoid

(3 species: �,�,�)
�(�,�,�) = ���(1 ― �/�) ― ��―� + 1 ― ��―� + 1

�(�,�,�) = �(1 ― �―��―� + 1 ― ��―� + 1

)
��―� + 1��―� + 1 + ��―� + 1

ℎ(�,�,�) = �(1 ― �―��―� + 1 ― ��―� + 1

)
��―� + 1��―� + 1 + ��―� + 1

, � = 0.4 � = 50

, � = 0.7 � = 0.4

 � = {3.2,3.2,3.6}� = {0.75,0.84,0.84}

Table 1: Model structure and parameter values for {periodic, chaotic (high spatial synchrony), and 

chaotic (low synchrony)} dynamics of a single-species Ricker model (Ricker, 1954), a two-species 

predator prey model (Zhang et al., 2018), and a three-species host-parasitoid-parasitoid model (Yu 

et al., 2009). We simulated spatiotemporal data on a one-dimensional lattice with dynamics given 

by 
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��� + 1 = [(1 ― �)�( 
��) +

�
2

(�( 
� ― 1� ) + �( 

� + 1� ))]����
��� + 1 = [(1 ― �)�( 

��) +
�
2

(�( 
� ― 1� ) + �( 

� + 1� ))]����
��� + 1 = [(1 ― �)ℎ( 

��) +
�
2

(ℎ( 
� ― 1� ) + ℎ( 

� + 1� ))]����
Here  (Model 1),  (Model 2),  (Model 3),  is the dispersal rate given by   ≡ �  ≡ �,�  ≡ �,�,� �

 (Model 1),   (Model 2), and  (Model 3). � = {0.1,0.25,0.25} � = {0.25,0.25,0.25} � = {0.2,0.3,0.1}

The noise term is drawn independently from a normal distribution, i.e.  with ��� ∼ �( ― �2

2 ,�2)

 (Model 1),  (Model 2), and  (Model 3).� = 0.1 � = 0.05 � = 0.1

Figure 1: ARD outputs for (a) naive sEDM and (b) informed sEDM. Each row corresponds to a 

single simulation of a two-species competition model (SI.1). sEDM framework included 28 ‘lags’ 

in attractor reconstructions. Lag indices are ordered ��� ― 1,…,��� ― 4,�� ― 1� ― 1,…,�� ― 1� ― 4,�� + 1� ― 1,…,�� + 1� ― 4,…,

. Shaded lag indices were determined by ARD to be relevant for making predictions �� + 3� ― 1,…,�� + 3� ― 4
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(darker colors indicate stronger relevance) and white indices were determined to be irrelevant. The 

strength and index of relevant lags is not consistent in (a), highlighting an identifiability issue. 

More agreement across simulations in (b) demonstrates the utility of the informed prior. 

(a) EDM (b) Naive sEDM (c) Informed sEDM

Figure 2: Embedding vectors that map to the one-step-ahead output at location . The box shows �
embedding vector entries for EDM (a), sEDM with a naive prior (b), and sEDM with an informed 

prior (c). The shading of entries represents the prior specification for length scales. Darker colors 

represent higher values of . �(�)
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Figure 3: Libraries of embedding vectors used to train the GP and make predictions at location . �
A local library uses embedding vectors centered at site  (a). A concatenated library combines �
libraries across multiple sites (b). A concatenated library may combine data from all locations or 

a subset of locations.

Figure 4: Illustration of dispersal for symmetric and asymmetric coupling schemes.
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Figure 5: Strata locations from the NEFSC fall bottom trawl survey. Dots are midpoints of offshore 

strata, and colors indicate which region each stratum is in.
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Figure 6: Average RMSE (points) and standard deviation (error bar) on testing data over 100 

simulations of each model from Table 1. Results are shown for local (open boxes) and 

concatenated (closed circles) informed sEDM (purple), naive sEDM (pink), and EDM (yellow). 

Each model was simulated with 3 parameter sets generating periodic dynamics (left), highly 

synchronous chaotic dynamics (middle), and asynchronous chaotic dynamics (right).
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Figure 7: Average RMSE (points) and standard deviation (error bar) on testing data over 100 

simulations of each model from Table 1. Results are shown for local (open boxes) and 

concatenated (closed circles) informed sEDM (purple), naive sEDM (pink), and EDM (yellow). 

Each model was simulated with 3 time series lengths:  (left),  (middle), and ������ = 25 ������ = 50

 (right).������ = 75
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Figure 8: Average RMSE (points) and standard deviation (error bar) on testing data over 100 

simulations of each model from Table 1. Results are shown for local (open boxes) and 

concatenated (closed circles) informed sEDM (purple), naive sEDM (pink), and EDM (yellow). 

Each model was simulated with symmetric nearest neighbor dispersal (left) and asymmetric 

unidirectional dispersal (right).
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Figure 9: Average RMSE on testing data over 50 simulations of each model from Table 1. for 

various degrees of heterogeneity. Results are shown for local (dotted lines) and concatenated (solid 

lines) informed sEDM (purple), naive sEDM (pink), and EDM (yellow). The measure of 

heterogeneity in growth rate is given by the amplitude of the sinusoidal function used to vary the 

growth rate parameter. The auxiliary upper -axis is the empirical measure of heterogeneity in �
mean abundance (see Methods). Note that this empirical measure is not linear nor monotonic due 

to complexity and noise in dynamics.
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Coarse

Fine

Figure 10: Sequential forecast RMSEs on NEFSC bottom trawl survey data for three species: 

longfin squid, silver hake, and butterfish. Results are shown for local (open boxes) and 

concatenated (closed circles) informed sEDM (purple), naive sEDM (pink), and EDM (yellow). 

Top (bottom) panels show results for coarse (fine) spatial resolution data separated by major 

biophysical region (survey strata). 
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